Last Time: Multirate Systems Ex: -1-1 Q: Why is this bad? A: Blockings artifacts. (Imagine upsampling by factor 8) Pemark: Interpolation filter design is a kind of art.

	what	abo ut	linew	in terpolation?
. 		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	y CnJ	$\frac{1}{2}$
Ext So	$\frac{2-Cises}{1^{\frac{n}{2}}}$	vhat is		$ \frac{2}{2} $
. <			$En3 = \frac{wEn}{2}$ $En3 = \frac{1}{2} SC$	$\frac{\pm 13 \pm 4 \text{ En-13}}{2} \pm 4 \text{ En-3}$ $n \pm 13 \pm 5 \text{ En-3} \pm \frac{1}{2} 5 \text{ En-3}$
A	Why i Looks SoneA	is this too ! Mag th	bad? Shap. 1 at look	NC want 5 SMooth.

065: looks kinda like a sinc => low-pass ~_ _ _ _ _ Goal: y Cn J uCnJ -101232 Exercise: What about the filter hCn3 112 112 114 9 114 9 114 -2-1012

Obs: It's bad because it cu original samples! charges the cleck that happens @ Y Coz $Y [0] = 1 + 0 + \frac{1}{4} (2) = \frac{3}{2} \neq 4 [0]$ we lestroyed the original samples! Goal: Interpolate and preserve samples. Obs: The issue is at even coeff. of hCuz. Property: An interpolation filter Must Satisfy (12) h Cu? (h E 2 u 3 + 8 Eu 3 half-band condition Obs: Interpolation filte design is only about the odd coeff.

Frequency - Domain Analysis > AZ H - YEnz V [n] - $= \int U(e^{j\omega}) = V(e^{j2\omega})$ $\bigcup (z) = \bigvee (z^{\nu})$ V (ein) $U(e)^{\sim})$ Copie

we have already seen low-pass interpolation.
Q: What is high-pass interpolation?
Q: Given a low-pass filter, is there a corresponding high-pass filter?
A: Yes.
$G(e^{j\omega}) = H(e^{j(\omega-\pi)})$ Shift in Fief.
g-En? = e ^{j TT} h En? Modulation in time
$= (-1)^n h En 3$
Obs: If hEnd satisfies half band condition, then so dals grEnd. Ceven index stays the
Trick: Flip every other coeff of hCm3 to get grEm3.

Exercise: Given the livear interp-filter what is the corresponing high-pass filth g.Cn3? h Cn 3, Sol=: g- [~] really wiggly -112 -112 => high-pass uCnJ Y CnJ -1 0 1 2 3 Obs: Original samples ae preserved because g-Eng satisfies the half-bad condition.

Q: Is up sampling linear? A: Yes d, ZGR Prove (M2) (QV, En3+BV2En3) { d V, [÷] + 8 V2[÷]) { 0, n e ven n oM $z \neq \{V_1 [\tilde{z}], neren \} \neq \{V_2 [\tilde{z}], neren \}$ $z \neq \{O_1, nodd \} \neq \{V_2 [\tilde{z}], neren \}$ $nodd \} \neq \{V_2 [\tilde{z}], neren \}$ $= d (92) V_{1} [n] + B (12) V_{2} [n]$ \Box Q: IS upsampling time - invariant? A: No. Proof: After upsamplings, the signal has zero for odd coeff. alugys V[n] - Z-1 - AZ- Y, [n] odl coefe Zero $\gamma_0 [n] \neq \gamma_1 [n]$ =) wort time - in variant 1 V[n] - AZ = Z= YZ[n] eren oekf

Remark: This is why multivate DSP is hard: Operations don't Commute. Multirarthe Filterbank X2En3-Frifed - GT-V27-Y2Ens $\begin{array}{c} le^{i-j} \\ -\pi \end{array} \xrightarrow{T_{I}} \\ -\pi \xrightarrow{T_{I}} \\ X(le^{\gamma})$ My It's plexed the spectrum 277

General Case of Upsampling NEZ 4Enzz & V[=]], n is mult of L O, eise 11-VCn] insert (L-1) Zeros betreen Samples $U(z) = V(z^{L}) \implies U(e^{jw}) = V(e^{jLu})$ Ex: L=4 ()(e^{,~}) $V(e^{j})$ $-\pi$ T *ll* · 3 copies of the spectrum · 4 total spectrums Obs: 4 options for the intep. filter Gevend! L'interp. filters for the L'spletriums

Down samplings by Factor 2 Q: What is down sampling? A: Deletings Samples VEn3=xE2n3 212 12 x [n] -1-5°2 0.5 -1 0 1 2 3 -1 0 - 5 -1 0 - 5 -5 0 1 2 3 S Q: Is down sampling livear? A: Yes it tone-invariant? Q: Is A: No a: Is it invertible? A: No.

Q: How are the spectrums X(ei-) and V(ein) related? $\underline{A} : U(e^{\delta \alpha}) = V(e^{\delta^2 \alpha})$ How are 45m3 and ×5m3 related? x Enz: x Coz × [1] × [2] × [3] × [4]. -x[1] *[2] -x[3] ×[4] + C-1)"×C.3. × C.03 2 u [n]: 2 × [0] 2×543 ---2×[23 0 C $=) u [n] = \frac{1}{2} \left(x [n] f (-1)^{n} x [n] \right)$ $= \sum \left(\int (e^{i\omega}) = \frac{1}{2} \left(X(e^{j\omega}) + X(e^{j(\omega-\pi)}) \right) \right)$ $\Rightarrow V(e^{\delta \omega}) = \frac{1}{2} \left(\chi(e^{\delta \frac{\omega}{2}}) + \chi(e^{\delta \frac{\omega}{2}}) \right)$

065: Downsampled spectrum is the aug. of original spectrum stretched by factor 2 and that save spectran, $\frac{1}{2} \times (e^{i(\frac{w-2\pi}{2})})$ Shrfted by 200 EX xleⁱ) $\frac{1}{2} \frac{1}{2} \frac{1}$ π 2π aliasing destroyed orrgiml Signal Q: What conditions on X(ein) for no aliasings? A: Bardlimited [-T, T].

EX: $\chi[e^{j})$ Ir--2₩ -₩ <u>ν</u>τ<u>γ</u> Downsamphing is always preceded by fibting Remark: Decimation H + 2 antialiasign filter Obs: Reverse of up sampling.